
 Impact Amplification Kit -
 PLEIADE Intellectual Output 6

 “PLayful Environment for Inclusive
 leArning Design in Europe”

 “PLEIADE”
 Project No. 2020-1-IT02-KA201-080089

 The European Commission's support for the production of this publication does
 not constitute an endorsement of the contents, which reflect the views only of the
 authors, and the Commission cannot be held responsible for any use which may
 be made of the information contained therein.

 1

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Project ref. number 2020-1-IT02-KA201-080089

 Project title PLEIADE — PLayful Environment for Inclusive leArning
 Design in Europe

 Document title Impact amplification kit

 Document Type Intellectual Output (accompanying document)

 Document version 1

 Previous version(s) –

 Planned date of delivery 30/06/2023

 Language This accompanying document: English

 The kit: English, Italian, Bulgarian and Greek.

 Dissemination level Public

 Number of pages 26

 Partner responsible CNR-ITD

 Author(s) Passarelli M., Pozzi, F., Persico, D., Volta, E.

 With contributions by: Translations provided by: Marilina Lonigro
 (Rocca-Bovio-Palumbo school), Christos Kyriakides (Neapolis
 Gymnasium), Anita Marietova (144 Narodni Buditeli school).

 Appendix 2 has been authored by Matteo Bicocchi, Pietro
 Polsinelli and Carlo Innocenti.

 Revised by: Marieta Angelova (144 Narodni Buditeli school), Elitsa Peltekova
 (UniSofia)

 Abstract This document accompanies the sixth Intellectual Output (IO6)
 of the Erasmus+ project “PLayful Environment for Inclusive
 leArning Design in Europe” (PLEIADE), which is the Impact
 Amplification Kit.

 According to the project proposal, the kit aims to amplify the
 impact of PLEIADE by providing stakeholders who are not

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 directly involved in the project with the tools and support they
 need to implement project results in their own context. The kit
 consists of an online survey that guides users towards choosing
 the most suitable resources from those produced by PLEIADE.
 The kit is available in English, Italian, Bulgarian and Greek.

 The kit includes two appendices .

 Appendix 1 contains the results of the evaluation of the
 teachers’ professional development pathway carried out in
 PLEIADE. The evaluation is mainly based on the data collected
 during IO1, IO2 and IO3.

 Appendix 2 provides technical details for developers who want
 to customise or further develop IO2, i.e. the Hybrid I4Ts game.
 This game is one of the main outputs of PLEIADE

 Keywords amplification, dissemination, exploitation, project results,
 teachers’ professional development

 DOI https://doi.org/10.17471/54021

 How to cite Passarelli M., Pozzi, F., Persico, D., Volta, E. (2023). Impact
 amplification kit (PLEIADE Intellectual Output No. 6).
 https://doi.org/10.17471/54021

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Table of Contents

 1. Executive summary 5
 2. Introduction 5
 3. The Impact Amplification Kit 6
 4. References 8
 Appendix 1 - Evaluation of the PLEIADE Teachers’ Professional Development 9
 Appendix 2 - Developers’ Documentation for I4Ts Game 10

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 1. Executive summary
 This document accompanies the sixth Intellectual Output (IO6) of the
 Erasmus+ project “PLayful Environment for Inclusive leArning Design in
 Europe” (PLEIADE), the Impact Amplification Kit.

 According to the project proposal, the kit aims to amplify the impact of the
 PLEIADE by providing stakeholders who are not directly involved in the
 project with the tools and support they need to implement project results in
 their own context. The kit consists of an online survey that guides users
 towards choosing the most suitable resources from those produced by
 PLEIADE. The kit is available in English, Italian, Bulgarian and Greek.

 The kit includes two appendices.

 Appendix 1 contains the results of the evaluation of the teachers’ professional
 development pathway carried out in PLEIADE. The evaluation is mainly based
 on the data collected during IO1, IO2 and IO3.

 Appendix 2 provides technical details for developers who want to customise or
 further develop IO2, i.e., the Hybrid I4Ts game. This game is one of the main
 outputs of PLEIADE.

 2. Introduction
 This is the accompanying document of IO6, i.e. the project Amplification kit.

 The kit itself is aimed to amplify the impact of the project, by providing
 guidance to any stakeholder (especially teachers, teacher trainers, school
 principals, researchers, policy makers, etc.) in selecting among the numerous
 resources produced within the project.

 This accompanying document, instead, aims to describe the kit itself and
 provide the rationale behind its design and development. Moreover, the kit is
 also featured with two appendices: the first provides results of the evaluation
 of the main project outputs, while the second contains technical information
 for developers interested in taking up, customising, or further developing the
 Hybrid I4Ts game (IO2), which stands as one of the most innovative outcomes
 of the project.

 To be noted, originally this output was expected to be led by EDEN, who was
 overall responsible for the project dissemination. Unfortunately, in Autumn
 2022 EDEN withdrew from the project (see related contract amendment) and

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 the responsibility for IO6 was taken by CNR-ITD. The output was delivered in
 June 2023, according to the project time schedule.

 This accompanying document is structured as follows: the next section
 contains a description of the amplification kit.

 Appendix 1 contains the analysis of the data collected throughout the project
 with the aim to evaluate the main project results (IO1, IO2 and IO3). This
 appendix, unlike the rest of the document which is open and covered by a
 CC-BY-NC licence, is delivered as RESTRICTED.

 Appendix 2 is a technical annex, complementing the information already
 contained in IO2 on the Hybrid I4Ts game, allowing further customization and
 thus transferability of this innovative outcome.

 3. The Impact Amplification Kit
 Diffusion of innovation on a large scale is a lengthy process in which early
 adopters play a key role to spearhead it in their professional environments
 and professional communities (Rogers, 1995). In order to enact systemic
 change, the energy and enthusiasm of early adopters has to be appropriately
 harnessed (White, 2007) by taking care of the barriers they encounter and
 nurturing their motivation in the challenging experience consisting of early
 change and innovation (Armstrong, 2019).

 To this end, PLEIADE has developed Impact Amplification Kit specifically
 aimed at all stakeholders belonging to the early adopters and early majority
 cohorts. This tool is a key provision intended to help them to take the PLEIADE
 methods and tools up to their own contexts and in doing so innovate the
 practices of their communities on a peer-to-peer basis, which is recognized by
 several authors as the most effective approach for knowledge transfer in the
 teaching community (Vescio, Ross, & Adams, 2008).

 The kit is self-explanatory, so that it can be used by teachers, school leaders,
 teacher educators, researchers or other stakeholders interested in adopting
 innovation concerning the PLEIADE methods and tools. The kit is expected to
 amplify and facilitate PLEIADE impact at European level.

 The Impact Amplification Kit consists of an online survey that guides users
 toward choosing the most suitable resources produced by PLEIADE. The kit is
 accessible at this link:

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 https://survey.itd.cnr.it/123514

 Figure 1. The kit welcome screen.

 By answering questions aimed to understand the users’ interests and needs,
 users are guided within the set of numerous available resources that were
 produced during the project implementation.

 The resources include not only the main project outputs (i.e. IO1, IO2, IO3, IO4
 and IO5), but also all the teaching and learning materials produced and used
 especially during the teachers’ professional development pathway, along with
 the scientific papers produced, etc.

 Overall, the kit includes more than 30 resources covering the main project
 topics, e.g. collaborative learning, social inclusion and education, learning
 design, gamification, practice sharing, and PLEIADE project itself. Most of the
 resources are available not only in English but also in other languages (Italian,
 Bulgarian and Greek). Moreover, most of the resources are available in
 multiple formats, e.g. slides, videos, texts, etc.

 In the kit each resource is introduced by a brief description, so that the user
 can understand whether they fit with his/her actual interests and needs.

 To make the kit more appealing, some of the resources are also introduced by
 short videos, aimed to give an idea of the resource itself at a glance.

https://survey.itd.cnr.it/123514

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 4. References
 Armstrong, E. J. (2019). Maximising motivators for technology-enhanced
 learning for further education teachers: Moving beyond the early adopters in
 a time of austerity. Research in Learning Technology, 27.
 https://doi.org/10.25304/rlt.v27.2032

 Rogers, E. M. (1962). Diffusion of innovations (4th ed.). New York, NY, US: Free
 Press. http://dx.doi.org/10.2307/2573300

 Vescio, V., Ross, D., & Adams, A. (2008). A review of research on the impact of
 professional learning communities on teaching practice and student learning.
 Teaching and Teacher Education, 24(1), 80-91.
 https://doi.org/10.1016/j.tate.2007.01.004

 White, S. (2007). Critical success factors for e-learning and institutional
 change—some organisational perspectives on campus-wide e-learning. British
 Journal of Educational Technology, 38(5), 840-850.
 https://doi.org/10.1111/j.1467-8535.2007.00760.x

https://doi.org/10.25304/rlt.v27.2032
http://dx.doi.org/10.2307/2573300
https://doi.org/10.1016/j.tate.2007.01.004
https://doi.org/10.1111/j.1467-8535.2007.00760.x

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Appendix 1 - Evaluation of the PLEIADE
 Teachers’ Professional Development
 This Appendix contains the evaluation of Teachers’ Professional development,
 encompassing IO1 (Blended Teachers' Professional Development pathway),
 IO2 (The Hybrid I4Ts Game) and IO3 (Gamified Platform for the Blended
 Training Activities).

 Given that this document is delivered as RESTRICTED, it is contained in a
 separate document that can be accessed, upon request, from this link:

 https://docs.google.com/document/d/11N4I8iP_-GOFaHJcNO63P2EuS19Okbjmr
 NLUvslsPsM/edit?usp=sharing

https://docs.google.com/document/d/11N4I8iP_-GOFaHJcNO63P2EuS19OkbjmrNLUvslsPsM/edit?usp=sharing
https://docs.google.com/document/d/11N4I8iP_-GOFaHJcNO63P2EuS19OkbjmrNLUvslsPsM/edit?usp=sharing

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Appendix 2 - Developers’ Documentation for
 I4Ts Game

 Introduction
 This Appendix contains technical information about IO2, i.e. the Hybrid I4Ts
 Game.

 In IO2 accompanying document , a User guide was provided, to support use of
 the game by any teacher/player.

 As explained in IO2, some level of customization is already possible for the
 game at the user level: for example, the game is available in different
 languages (English, Bulgarian, Greek, and Italian) and can be even translated
 to other languages with no need of technical competences. Even the contents
 of the cards can be changed with no intervention by a developer.

 In this Appendix, instead, we provide further technical details which can serve
 developers to take the game up and further customise, adapt, change it,
 according to needs different from those of the project. This is done to make the
 game even more transferable to other training contexts.

 For completeness sake, we suggest you read this Appendix in conjunction with
 IO2, which contains the full description of the game.

 Premises
 The application is a client native application that connects online at startup
 and during service (http call) to a web based server. It has been built so as to
 be as stable as possible, compatible with generic hardware (Windows, Mac)
 and resilient to low definition printed markers. The client development tool
 (Unity) is a commercial product but is available with a full free version. The
 web service servicing the cards and their logic is built on a Prolog backend.

 Full sources of all the modules composing the application (Unity project, C#
 code, Prolog backend, card service) are available through a public Git server
 here:

https://doi.org/10.17471/54014

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 https://github.com/4Ts-game/4Ts-public-repository

 allowing the customization and branching of the application.

 Changes in the application client require to be proficient in Unity
 development, but do not require Prolog competence, as that is used as a
 service. Changes in the educational model behind the cards require Prolog
 competence to adapt the service to the intended model.

 The I4T Game client is developed with Unity3D version 2019.4.9f1 (go to
 downloads at https://unity.com). The source code of the client is written in C#.
 It is realized under GPL license and it is open source.

 The Unity plugins installed are all free, freely available and included in the
 distribution.

 The Hybrid game is developed using the open source “OpenCV” ArUco
 markers Library
 (https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html) ported
 for C# and Unity (https://github.com/NormandErwan/ArucoUnity) by Erwan
 Normand.

 Arcuro Markers Documentation:

 h�ps://medium.com/@calle_4729/using-mathema�ca-to-detect-aruco-markers-197410223

 f62

 The Online Card service is developed in PHP, javascript, CSS and HTML.

 It uses a Google sheet as a datasource converting it into a JSON object to

 retrieve and display the cards’ data.

https://github.com/4Ts-game/4Ts-public-repository
https://unity.com/
https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html
https://github.com/NormandErwan/ArucoUnity
https://medium.com/@calle_4729/using-mathematica-to-detect-aruco-markers-197410223f62
https://medium.com/@calle_4729/using-mathematica-to-detect-aruco-markers-197410223f62

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Markers are produced based on the card ID using the ArUco Marker

 generator made by Oleg Kalachev (https://github.com/okalachev/arucogen).

 Markers format : 4x4 (50, 100, 250, 1000)

 Arcuro Markers online generator : https://chev.me/arucogen

 All required downloads:

 Unity: https://unity3d.com/get-unity/download/archive

 Unity project sources: https://github.com/4Ts-game/4Ts-public-repository

 Prolog and its service: https://github.com/4Ts-game/4Ts-public-repository

 Card service: https://out.open-lab.com/pleiade

 Configure the Unity Application

 Prolog Server
 In order to configure the Prolog URL in the Unity application select and edit
 the FourTManager Prefab And modify the server URL option. Save the prefab.

https://github.com/okalachev/arucogen
https://chev.me/arucogen/
https://unity3d.com/get-unity/download/archive
https://github.com/4Ts-game/4Ts-public-repository
https://github.com/4Ts-game/4Ts-public-repository
https://out.open-lab.com/pleiade/

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Google Sheet Languages
 In order to configure the Association of different languages and the
 corresponding Google Sheet, open the LoadGame Scene, select the
 LoadGameManager asset and add / change in the Inspector the Google Sheets
 option.

 The flow of code and Unity scenes in the client application

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 In order to edit the Unity application you need to have the appropriate Unity
 version and a code editor (like Visual Studio as provided by the Unity
 download).

 The application is composed of three scenes: Intro, LoadGames and Game. The
 application must start from the Intro scene.

 The overall namespace of the classes is FourT . Inside the Unity project, as
 usual the classes are defined in the Assets/_Scripts folder.

 Classes are in bold and methods in italic .

 Intro scene

 This is just a passthrough scene that presents a splash and loads the
 LoadGames scene.

 LoadGames scene

 When launching the application, in all cases the first class to set up is the
 (unique) instance of FourTManager which will persist across scenes.

 This singleton class will load the cards either from an online spreadsheet on
 from the local Resources folder, and then will load persistent data of previous
 games if available. It also handles saving games through the Persistence class.

 The main scene-specific manager is LoadGamesManager : this will set two
 properties that determine the game’s behaviour:

 FourTManager.I(). Game.Level :

 Value 0: Visually 1, with full feedback on played cards.

 Value 1: Visually 2, like 0 but does not check the technique cards.

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Value 2: Visually 3, this does no checks.

 FourTManager.I(). Game.GameType :

 Value 0: Purely digital game.

 Value 1: Hybrid, integrated with a webcam detecting the board (corners
 and card locations) and cards.

 Defined those, the GameScene scene is loaded.

 The Persistence class: this class saves and loads games with a simple JSON
 serialization based on a built in service, JsonConvert . SerializeObject .

 GameScene

 The main scene manager of the game scene is BoardManager . This class
 designs the board (eventually loaded from persistence), setups a listener for
 clicks in card locations and launches the appropriate classes according to the
 game type.

 In case the board is clicked (digital version) or a physical card is placed
 (hybrid), the card chooser panel is activated (method ShowCardChooser) and
 on a choice, the method PlaceCardOnBoard is called.

 On every card played, if the game’s level is not “3” (2 internally) the
 completeness check is called:

 ServerJob .I. CompletenessCheckCall()

 And also the game state gets persisted with a call to (see the documentation
 below).

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 FourTManager .I(). Persistence . SaveGame() ;

 More classes

 Assets/_Scripts/FourTConfiguration

 This is a typical Unity configuration class (ScriptableObject) that keeps
 references to graphical assets.

 Assets/_Scripts/Model/Board.cs

 Board navigation methods for reaching the played cards.

 Assets/_Scripts/Model/Card.cs

 Properties and methods for defining cards, their type, specific properties and
 runtime their position on the board. Also methods for getting the card full
 instance given their type and/or ID.

 Assets/_Scripts/FourTMarkersManager.cs

 Methods for handling the hybrid functionalities: methods for scanning the
 markers present on the board, handling of physical action following detection
 of played cards, integration with the board digital representation.

 Assets/_Scripts/ServerJob.cs

 This is an asynchronous service class that interacts with the remote server and
 services, in particular gets the validation XML answer for any card
 configuration.

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Assets/__Scripts/AlertManager.cs

 Methods for displaying and managing the alert popup and retrieving message
 texts from the KB.

 Implementation Examples

 Add a new scene between the “LoadGames” and the “Game” scene

 Once you created a new scene, you can jump to it in code using the
 SceneManager.LoadScene(string sceneName)

 na�ve method or the

 SceneChanger.ChangeScene(string sceneName)

 implemented method.

 If you need to introduce an Introductory scene between the “LoadGames” and the “Game”
 scene just if the chosen game level is 1, you can do that once all the game setup has been
 executed. Currently the scene is changed in the LoadGamesManager.NewGame() method
 a�er cards have been set-upped, in a callback:

 FourTManager.I().CardsDoSetup(()=> {

 SceneManager.LoadScene("Game");

 }, FourTManager.I ().Game.SheetId);

 You can change the flow like this:

 FourTManager.I().CardsDoSetup(()=> {

 if (FourTManager.I().Game.Level == 1)

 SceneManager.LoadScene("HelpIntro");

 else

 SceneManager.LoadScene("Game");

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 }, FourTManager.I ().Game.SheetId);

 Where HelpIntro is the name of the new scene you introduced.

 In the new scene you then should let the user to con�nue by loading the “Game” scene,
 either with a bu�on ac�on or with an event, by calling SceneManager.LoadScene("Game");

 Any new scene must contains the FourTManager and the Alert prefabs and should be
 structured as displayed in the following image:

 As best prac�ce, the new scene should have a corresponding Class to manage the UI and any
 scene func�onality calling it [myNewSceneName]Manager so if your new scene is called
 HelpIntro your Class will be named HelpIntroManager .

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Change the choose cards flow

 At the �me the flow displays the card chooser popup filled with the available cards of the
 correct type. This is managed by the BoardManager.I.ShowCardChooser() method. This
 method gets all the available cards by the selected type
 (FourTManager.I().Game.CardsAvailable(Type)) and fills the slider with those cards if
 available.

 If you need to change this flow introducing a new step before the slider you should use the
 Card Dic�onary generated by the public Dic�onary<int, int> CardsAvailable(Card.CardType
 type) method for the cards list; create a new popup element where you will print the cards
 and make all the methods to collect the cards to display in the slider. You then must change
 the code to display the chosen cards instead of all of them passing the new Dic�onary as
 cardsToDisplay in the cards loop at line 656 . Of course you should create a new method
 where to move all the code that is now used to open the slider and display the cards and
 invoke it once the player chooses the cards.

 Creating a new popup type

 A good example to implement a new popup can be the AlertManager Class that is used to
 display the most of the warnings of the applica�on.

 As for the AlertManager a Prefab element is needed for the popup UI.

 Your new Class should have an Opener and a Closer method (see the AlertManager Class) to
 be invoked when needed.

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Adding score to the gameplay

 Create a new Class to keep track of the score as for example a ScoreManager .

 Implement methods to add or subtract points from the Score.

 If the score depends on errors or good choices you can modify the score when the
 Consistency Check or the Completeness Check is performed in the BoardManager Class .

 The Knowledge Base
 The Knowledge Base (KB from here on) service is an HTTP based service
 implemented in Prolog and run through the SWI Prolog environment.

 KB is accessed by the I4Ts game client through HTTP requests. KB responds by
 providing validation results for the current game board, as well as suggestions
 when requested by the user through the use of special cards.

 Notice that the I4Ts game client and KB services don’t need to be co-located;
 the KB service can be run on nodes which are remote to the I4Ts game client,
 as long as the client is able to submit HTTP requests to KB.

 The following figure provides a high level description of the communication
 flow between the I4Ts game client and KB.

https://www.swi-prolog.org/

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 A typical request to KB contains:

 ● the game level currently in use (entry or advanced)
 ● the current placement of the cards on the board
 ● whether KB should check the board for completeness or not.

 The request details are specified as parameters of the HTTP request (the verb
 of the request - GET/POST or else, it doesn’t matter).

 KB responds with an XML structure which contains the validation results and,
 if requested, suggestion cards.

 Internally KB’s behaviour changes significantly depending on the game level
 currently in use.

 For “entry” (L1) level, KB’s main task is to match the provided board layout
 against one of the board templates which have been compiled as “valid” (i.e.
 the collaborative techniques); that’s where the use of a language like Prolog
 comes in very handy, as Prolog is particularly well suited for performing
 pattern matching of that kind.

 For “advanced” (L2) level, KB performs a number of atomic operations - like
 performing a finer grain pattern match against known good patterns to verify
 that specific individual combinations of tasks/teams and technologies are
 valid, but also a number of lighter weight checks which grant more flexibility
 to the overall patterns that a user may be specifying.

 In both cases, KB provides as many details as possible about detected errors
 and communicates them back to the caller through error code numbers and a
 default description.

 The following figure provides an example of how KB “reasons” through a
 client request.

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 KB technical details
 As most of the tasks performed by KB are based on pattern matching, KB is
 entirely implemented in Prolog, and exposed through a simple HTTP interface.

 KB requires SWI-Prolog (https://www.swi-prolog.org/), which is available for
 free and supports the ability of exposing Prolog rules through a simple HTTP
 server out of the box.

 KB’s internal components are roughly split into three modules:

 ● The HTTP interface
 ● The “base level” board analyzer
 ● The “advanced level” board analyzer.

https://www.swi-prolog.org/

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 The following sections get into more details for each of them, focusing mostly
 on how a developer can modify the existing KB behavior to better suit their
 needs.

 HTTP Interface
 KB relies on the SWI-Prolog HTTP server libraries
 (https://www.swi-prolog.org/pldoc/man?section=httpserver).

 By executing the “swipl loadAll.pl” command, the server is automatically
 started on port 8000; you can verify that the server is listening for request
 using the “ping” endpoint:

 $ curl -X GET localhost:8000/ping

 <?xml version="1.0"?>

 <!DOCTYPE ping-response >

 <ping-response>

 <system-is-active />

 <system-version>4.42</system-version>

 <system-date>Mar 05, 2021</system-date>

 <client-ip>ip(127,0,0,1)</client-ip>

 </ping-response>

 The endpoint used to verify the status of a board is “semantic_check_Unity”;
 http_driver:buildBoard/2 provides the complete description of the HTTP
 parameters expected by the “semantic_check_Unity” endpoint, like the game
 “level” (base or advanced), whether the board should be checked for
 completeness or just for errors, and the details of the cards currently on the
 board in each the available slots of each of the four columns.

 This simple example relies on default for all fields (“base level”, no
 completeness check, empty board slots), except for the presence of two cards
 in the first column, where the “task” card is wrong:

 $ curl -X GET
 "localhost:8000/semantic_check_Unity?C1-CSW-TECHNIQUE=181
 &C1-ABA-CSS-TASK=138"

 <?xml version="1.0"?>

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 <!DOCTYPE kb-response SYSTEM "kb_out.dtd">

 <kb-response>

 <inconsistent-slots>

 <slot>C1-ABA-CSS-TASK</slot>

 </inconsistent-slots>

 <inconsistent-details>

 <code>202</code>

 <detail>This Task is not the one expected in this
 slot by this instance of Technique. Read the Technique
 card again and make a different choice.</detail>

 </inconsistent-details>

 <missing-cards>

 </missing-cards>

 <suggested-cards>

 </suggested-cards>

 </kb-response>

 “Base Level” Board Analyzer

 “Base Level” and “Advanced Level” analyzer share content in the
 “kbCommons” module. There you will find most of the mappings among “Ts”
 and card IDs (card_instances_commons/2), the list of tasks (task/2), teams
 (team/2) and technologies (technology/2), as well as the list of error codes with
 their default description in English and some common utilities.

 The core of the “Base Level” board analyzer is defined in the “kbBase” module,
 including the definition of the technique cards (card_instances_base/2), the
 related techniques (technique/2) and the main analyzer rule
 (checkBoard_base/3).

 The analyzer relies on matching the provided board state against a set of valid
 patterns that are described by the boardPattern/1 facts. “boardPattern/1” are
 responsible for identifying *all* valid patterns in terms of the technique, task,
 team and technology IDs which are admissible in each column’s slot. For
 example, this is a valid pattern in the context of the “peer review” technique:

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 boardPattern(

 [

 column(1, '003', ← technique, week 1

 '102', '201', '306', '', ← task, team, technology

 '', '', '', ''),

 column(2, '', ← week2 of the same technique

 '112', '202', '311', '310',

 '', '', '', ''),

 column(3, '004',

 '105', '202', or('301','308'),
 or('','301','308'),

 ↗ valid technology combinations

 '', '', '', ''),

 column(4, '005',

 '112', '202', '311', '310',

 '108', '206', '309', '310')

]).

 The “boardPattern/1” facts are “expanded” when the system starts up into all
 the individual combinations allowed by the pattern definition; that happens
 automatically as part of loading the kbBase module, when the
 “assertAllPatterns/0” is executed. All expanded patterns are serialized into the
 “boardPatternExpanded.pl” file.

 For example, in the scenario listed above, expanded patterns will be created to
 take into consideration the fact that the “306” technology in week 1 can be
 defined either in the first or the second technology slot, as well as to create the
 atomic entries for each of the acceptable combinations defined by the “or()”
 conditions on technologies of week 3.

 If you need to add/delete/change valid patterns, or deal with the creation of
 new “T” instances, you will need to add/delete/change the corresponding
 patterns in kbBase.

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 Reloading KB always triggers the expansion of all defined patterns.

 “Advanced Level” Board Analyzer

 Similarly to the “base level” board analyzer with kbBase, the “advanced level”
 analyzer relies on rules defined in the kbCommons module and it exposes its
 core functionality in the kbAdvanced module.

 The main board validation entry point for the “advanced level” analyzer is
 “checkBoard_advanced/5”.

 The KB “advanced level” leaves more freedom to board users; as such, the KB
 checks are not strictly based on pattern matching against a set of predefined
 valid boards, but they rely on a series of verifications to validate that users are
 following specific rules and restrictions while defining their boards.

 The analyzer performs four high level board checks:

 1. It verifies that the task/team/technology and time combinations are
 acceptable.
 For example, the “assuming roles” task can only be performed by a
 “small group” team, and it takes a whole week if the “forum” technology
 is used, but it can be formed along with another task in the same week if
 “videoconference” or “no technology” are used.
 Such valid combinations are captured in the kbAdvanced:ttt/4 facts; for
 the example above:
 % Assuming roles
 ttt('111', '203', '301', 1). % forum
 ttt('111', '203', '305', 0). % videoconference
 ttt('111', '203', '310', 0). % no tech

 Similarly to what happens to “base level” patterns, these patterns can
 contain combinations of valid “T’s”, and are expanded automatically
 when KB is loaded; this is an example of a pattern relying on expansion:
 % Commenting on someone else's work
 % text editor or wiki
 ttt('105', or(['201', '202', '203']), or(['308','304']), 1).
 % (text editor or wiki) and forum
 ttt('105', or(['201', '202', '203']), and(['301', or(['308', '304'])]), 1).
 % (text editor or wiki) and no tech
 ttt('105', or(['201', '202', '203']), and(['310', or(['308', '304'])]), 1).
 % forum

 ttt('105', or(['201', '202', '203']), '301', 1).

 These patterns can be modified, and new patterns added, as needed;

 Project No. 2020-1-IT02-KA201-080089 (“PLEIADE”) — IO6: Impact amplification kit

 their expansion is performed when KB is loaded by the
 “kbAdvanced:expand_all_TTTs/0” rule.

 2. It verifies that the combinations of teams and technologies used are
 acceptable.
 That’s controlled by the kbAdvanced:valid_techs_for_team/2 rules,
 where acceptable technologies for each team are enumerated.

 3. It verifies the compatibility of technologies used in the same context.
 That’s controlled by the kbAdvanced:incompatible_techs/2 rules, where
 each technology lists the technologies it cannot be used side by side.

 4. It checks that prerequisite tasks are included before the specified task.
 That’s controlled by the kbAdvanced:prerequisite_tasks/2 rules, where
 each task is associated with a list of other tasks where at least one of
 those must be specified on the board before the task at hand.

 These individual checks allow KB to provide detailed error information when
 users specify invalid boards.

